Mobility as a Service - Now and In the Future

October 23, 2020

Prepared by:

Carol Schweiger

Schweiger Consulting LLC
About N-CATT
The National Center for Applied Transit Technology (N-CATT) is a technical assistance center funded through a cooperative agreement with the United States Department of Transportation’s Federal Transit Administration (FTA). Operated by the Community Transportation Association of America (CTAA), the mission of N-CATT is to provide small-urban, rural and tribal transit agencies with practical, replicable resources that help them apply technological solutions and innovations. Among its activities, N-CATT produces a series of white papers, technical reports such as this document, and other resources, all of which can be accessed on-line at https://n-catt.org.

About this Document
This document was prepared for CTAA by Carol Schweiger of Schweiger Consulting, LLC in October 2020 as part of the N-CATT cooperative agreement between CTAA and FTA. Opinions expressed or implied in this document are those of the authors. Nothing in this document is to be interpreted as position, policy or guidance from the United States Government. Incidental use of companies’ names or the names of their products is made solely to facilitate discussion and should not be regarded as recommendations or endorsements.
Table of Contents

1. **Introduction** ... 2
2. **Definitions of MaaS and Related Terms** .. 2
3. **Rural and Universal MaaS** .. 6
 3.1 **Rural MaaS** ... 6
 3.2 **Universal MaaS** .. 9
4. **Rural MaaS Examples** .. 10
 4.1 **Tompkins County, NY MaaS** ... 10
 4.2 **Rural California MaaS** .. 14
5. **Potential MaaS Roadmap** .. 17
6. **MaaS Evaluation Framework** ... 18
7. **Conclusions** ... 20
1 Introduction

Since the concept of Mobility as a Service (MaaS) was defined in 2014 by Sonja Heikkilä, many transportation agencies around the world have explored the potential of creating MaaS and have piloted MaaS. Specifically, agencies are deploying technologies and creating the partnerships with mobility service providers (MSPs) that are required to provide the basis for full-featured MaaS systems. However, many of the pilots and deployments are in urban areas. Typically, these areas have not only robust public transportation, but also other mobility services such as bikesharing, scootersharing, carsharing, ridesourcing, etc. This white paper focuses on the application of MaaS in a small urban or rural area, which looks different from a large urban implementation and typically has different goals than large-urban deployments.

This paper will describe the progress that has been made with MaaS in several rural and small urban areas in the US by:

- Reviewing the definition of MaaS and related concepts;
- Describing rural MaaS and “Universal MaaS;”
- Providing examples from agencies that are deploying MaaS;
- Defining a potential MaaS “roadmap;”
- Describing a MaaS readiness index/tool; and
- Describing a potential MaaS evaluation framework.

2 Definitions of MaaS and Related Terms

The following definitions of MaaS and two related terms are from a Work in Progress by the SAE Shared and Digital Mobility Committee - SAE JA3163, which is the Taxonomy of Shared Mobility: Ground, Aviation, and Maritime. This Recommended Practice provides a taxonomy and definitions for terms related to local and regional shared mobility (including ground, aviation, and maritime services) and their enabling technologies.

- Mobility as a Service (MaaS): An integrated mobility concept in which travelers can access their transportation modes over a single digital interface. MaaS primarily focuses on passenger mobility allowing travelers to seamlessly plan, book, and pay for travel on a pay-as-you-go and/or subscription basis.
- Mobility on Demand (MOD): A concept based on the principle that transportation is a commodity where modes have distinguishable economic values. MOD enables customers to access mobility, goods, and services on demand. This is different from MaaS in that it is a broader concept. The similarities and differences between MOD and MaaS are discussed in detail by Susan Shaheen and Adam Cohen at the Transportation Sustainability Research Center of UC Berkeley.
• Shared Mobility: The shared use of a travel mode that provides travelers with access to a transportation mode on an as-needed basis (including public transit, micromobility, carsharing, etc.).

Another definition that is important to include in the MaaS discussion is Mobility Management, since many people refer to MaaS as a way to provide or facilitate Mobility Management. “Mobility management is an innovative approach for managing and delivering coordinated transportation services to customers. Customers include older adults and people with disabilities. Mobility management focuses on meeting individual customer needs through a wide range of transportation options and service providers. It also focuses on coordinating these services and providers in an effort to achieve a more efficient transportation service delivery system.”

From the US Department of Transportation perspective, a mobility marketplace such as MaaS should incorporate the following MOD innovation principles:

- **Traveler-centric** – promotes choice in personal mobility driven by the specific needs of the traveler and utilizes universal design principles to capture the needs of all travelers.
- **Mode-agnostic** – encourages multimodal connectivity and system interoperability where all modes of travel are considered and integrated seamlessly to achieve the complete trip vision.
- **Technology-enabled** – leverages emerging and existing technologies, data connectivity, and standardization to support personal mobility choices.
- **Partnership driven** – develop and leverage unique partnerships, both public and private, to accelerate deployment of emerging mobility options.

Further, a MOD Marketplace (**Figure 1**) such as MaaS is a digital platform where multimodal supply for personal mobility and goods delivery services are integrated into a trusted venue for consumers to plan, reserve, and purchase services that meet their current needs. Consumer demand for these services is matched with supply provided by transportation agencies and operations managers, as well as private mobility and goods delivery providers. A Marketplace is enabled by strong data governance, integrated payment processing, and shared transactional specifications.

Another way to envision supply and demand is shown in **Figure 2**.
Figure 1. Mobility Marketplace Framework

Figure 2. Holistic View and Enablers of Mobility Marketplaces
The MaaS concept can best be described using Figure 3. In the upper left-hand corner, shared assets include shared mobility services such as bikesharing, carsharing and goods movement. In the middle left-hand side of the chart, personalized services that are integral to a MaaS offering include a personalized travel planner, information about all mobility services available to the traveler and a service level agreement (SLA). A SLA “defines the level of service you expect from a vendor, laying out the metrics by which service is measured, as well as remedies or penalties should agreed-on service levels not be achieved.”

SLA is usually associated with telecommunications services, but it applies directly to a MaaS offering. In the lower left-hand corner, items that facilitate travel are shown including personal data, traveler incentives for using specific mobility services and/or the MaaS offering, and smart payment, which allows the traveler to pay for the whole trip with either a MaaS “subscription” or one payment for the whole trip.

In the center of the chart is the traveler with the various MaaS providers/operators just outside of the traveler. The outer ring shows the general transportation mode categories offered in

Figure 3. MaaS Concept

One aspect of MaaS that makes it very appealing besides being a one-stop shop, it can provide connections to various aspects of active living, as shown in the upper right-hand corner of the chart – MaaS can facilitate access to education, leisure activities, commerce (e.g., shopping), etc. Further, in the middle right-hand side of the chart, are specific on-demand transportation items such as automated transport and drones, as well as the capability to keep the traveler connected. The lower right-hand corner has the MaaS enablers including real-time traffic management, transportation infrastructure, and rural and urban development.
MaaS including public transit, goods movement, aviation and maritime, and mobility services that can be accessed electronically. Two other critical parts of MaaS are the application programming interfaces (APIs) and data that drives MaaS. An API “is a software intermediary that allows two applications to talk to each other. Each time you use an app like Facebook, send an instant message, or check the weather on your phone, you’re using an API.” MaaS needs data to operate, particularly to allow trip planning, booking and payment as well as to provide the traveler with real-time information about the current status of their trip and the services that make up that trip.

3 Rural and Universal MaaS

3.1 Rural MaaS

Given the difference in the supply of mobility services in rural areas as well as several other factors, MaaS in rural areas will look different than it does in urban or even suburban areas. A study that defined MaaS services in four different geographic regions showed that rural areas “are suffering from a lack of commercial transport services, such as connections to long-haul and scheduled services. Therefore MaaS-enabled first- and last-mile services might provide significant benefits as the current service level could at least be sustained, the utilization rates could be increased and accessibility can be enhanced.” Further, demand-response and school transportation services could be accomplished by using shared-ride services such as carpools and vanpools. “Also, embedding other services, e.g., library services and small patch deliveries (medicine and food), as part of the MaaS package has been discussed, i.e. bringing services to customers, not vice versa. Since the demand is hard to predict and the availability of services may be more important than the price, pay-per-use will probably be the most practical way for rural customers.”

Figure 4 shows various aspects of a rural MaaS offering. These aspects of rural MaaS will be described in more detail in Section 4, which presents a few US rural MaaS deployments.

Figure 5 compares the objectives of rural MaaS versus MaaS in three other geographic areas. This highlights the unique characteristics of rural MaaS, particularly the potential to combine additional services such as goods delivery with mobility services, and not focusing on the reduction of private car ownership of use, which is a prominent goal of most urban MaaS offerings.

Any technology-enabled mobility service such as MaaS should be accessible, equitable and inclusive, but this is particularly true in a rural environment. The Greenlining Institute has identified modal priorities for urban, suburban and rural areas based upon “12 equity indicators [that] comprehensively measure various transportation modes across their impacts on mobility, air pollution, and economic opportunity in low-income communities of color. Comparing the equity performance of modes in targeted communities lays the groundwork for prioritizing the most equitable modes.”
Examples may include: demand-responsive transit and inter-city transit, park and ride lots, and safe bike and walk infrastructure.
In rural areas, which have “very low population density and highly dispersed destinations,” the prioritization of modes within the equity framework is shown in Figure 6. “Caltrans’ Smart Mobility Framework recommends prioritization of transportation projects and programs that:

- Create and maintain walkable rural towns and safety improvements on rural roads
- Connect networks of schools, services, and employment destinations”
- Because flexible, high-occupancy modes best suit the needs of a rural community, rideshare receives high priority. Rideshare and microtransit can be easily adapted for the appropriate scale, and can increase connectivity to schools, services, and employment destinations
- Where practical, active transportation ranks as a high priority due to the need for safe biking and walking infrastructure in town centers and on rural roads.
- Personal electric vehicles receive high priority, due to dispersed housing and destinations.
- Both electric and conventional public transit have a medium priority, due to efficiency. Yet this could vary depending on the need for public transit between rural towns or to connect to cities.
- Carshare, ride-hailing, bikeshare and taxis are ranked low, mostly due to lack of accessibility and feasibility”

![Figure 6. Rural Areas Mobility Choices Using Mobility Equity Indicators](image)

As mentioned earlier, the supply of mobility services in rural areas is not as large as it is in urban areas. In the development of a rural MaaS offering in Tompkins County, NY (described in Section 4), Dwight Mengel has envisioned the potential for increasing the supply of services once mobility is improved through MaaS as shown in Figure 7. Individuals can become volunteer drivers and receive benefits resulting in an increase in the supply of transportation.
On the left side of the figure, the increase in supply will eventually result in improved mobility for travelers.

Figure 7. Shared Mobility Strategy to Boost Mobility Supply in Rural Communities

3.2 Universal MaaS

AARP has defined the concept of Universal MaaS as a single, integrated network of traditional and non-traditional services that together serve everyone using universal design principles. This “one-stop shopping” platform should make it easy for anyone to plan, book and pay for a trip, as well as to navigate a trip easily (including facilitating transfers between mobility services). “Universal MaaS, while initially a concept for urban areas, could result in expanded mobility in small towns and rural areas as well, although the shift to this new paradigm will happen at a slower pace than in cities. Public bus service will play an important role, but alternative shared-ride solutions may offer a competitively priced advantage over traditional public transportation in certain circumstances. Transportation policy should support the best mix of transportation options that facilitate broad mobility.”

Further, a “Universal MaaS system, where specialized transportation services are integrated into a single platform along with other means of shared-use mobility services, could be smart enough to apply the appropriate subsidy for each unique human services transportation client and trip request, while protecting the privacy of the individual. For example, a qualifying Medicaid customer’s medical travel would be charged to the state or other appropriate entity such as the Medicaid nonemergency medical transportation (NEMT) broker. His or her nonmedical travel would be charged to a personal account or other subsidizing entity as appropriate. Gone, therefore, would be the days when that customer would have to go directly home rather than make a convenient stop-off at the grocery store because Medicaid only covers the medical portion of his or her trip. Beyond convenient cost allocation, MaaS could be
enhanced by the addition of mobility management, which lends a human dimension to a system that is otherwise primarily tech based. Mobility managers could provide direct assistance for complicated trip planning or even travel training—supplementary services to readily available one-click, one-call information centers.”

The concept of Universal MaaS is shown in Figure 8.

Figure 8. Open Universal MaaS Platform

4 Rural MaaS Examples

4.1 Tompkins County, NY MaaS

Tompkins County, NY, a primarily rural county with one small urban area (Ithaca, NY) faces three general mobility needs: opportunity loss to mobility operators, barriers faced by people who do not drive a car, and people desiring affordable mobility choices. These three mobility needs are driving change in how the County approaches developing and continuously improving the community mobility system. According to Dwight Mengel, Chief Transportation Planner at the Tompkins County Department of Social Services, fortunately, collaboration between public, private, and institutional mobility partners is part of the local culture. This culture of collaboration and innovation has encouraged “thinking outside-of-the-box” to create new mobility approaches, including MaaS. Thus, the County is creating a MaaS business model
and will be implementing it first in Tompkins County, then regionally. The greater objective is to provide a MaaS model for small urban and rural communities elsewhere in the country. The overall vision for MaaS in Tompkins County is shown in Figure 9. Customer Service is considered a focus of this system, ensuring not only that travelers have access to all available mobility services, but also that they have access to customer service 24 hours a day, 7 days a week. The value proposition for this rural MaaS has five major elements including mobility education, financial services (e.g., individual mobility plans, coordinated fare payment among mobility operators and customers, crediting volunteer driver mileage reimbursements as revenue, credit employer subsidies as revenue), customer service, incentives/discounts and capability to adapt and innovate (e.g., increase supply of volunteer drivers).25

An overall mobility “menu” of all mobility services in Tompkins County will be developed as shown in Table 1. Each traveler will select from this type of menu and tailor their mobility “subscription.” A sample mobility menu selection and subscription for a family that lives in the small urban area within the County is shown in Table 2 and one for a family living in the rural area of the County is shown in Table 3.

Figure 9. Tompkins County, NY MaaS Concept
Table 1. Mobility Services Menu and Unit Costs

<table>
<thead>
<tr>
<th>MOBILITY MENU</th>
<th>Unit Cost</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Adult Bus Pass</td>
<td>$450</td>
<td>Annual</td>
</tr>
<tr>
<td>Annual Youth Bus Pass</td>
<td>$110</td>
<td>Annual</td>
</tr>
<tr>
<td>Ithaca Carshare “Its my car” Plan</td>
<td>$8</td>
<td>Hour</td>
</tr>
<tr>
<td>Ithaca Carshare “Just in Case” Plan</td>
<td>$11</td>
<td>Hour</td>
</tr>
<tr>
<td>Car Rental</td>
<td>$55</td>
<td>Day</td>
</tr>
<tr>
<td>Taxi trip - City</td>
<td>$8</td>
<td>Urban Trip</td>
</tr>
<tr>
<td>Taxi trip - Rural</td>
<td>$20</td>
<td>Rural Trip</td>
</tr>
<tr>
<td>Bicycle Maintenance</td>
<td>$50</td>
<td>Voucher</td>
</tr>
<tr>
<td>Electric Bike Purchase</td>
<td>$2,000</td>
<td>HE Bike</td>
</tr>
<tr>
<td>Bike Purchase</td>
<td>$700</td>
<td>Bike</td>
</tr>
<tr>
<td>Rideshare Driver – Miles</td>
<td>$0.54</td>
<td>Mile</td>
</tr>
<tr>
<td>Rideshare Rider – Miles</td>
<td>$0.15</td>
<td>Mile</td>
</tr>
<tr>
<td>GADABOUT Paratransit</td>
<td>$4</td>
<td>Trip</td>
</tr>
<tr>
<td>Vanpool Membership</td>
<td>$125</td>
<td>Month/Seat</td>
</tr>
<tr>
<td>Guaranteed Ride</td>
<td>$30</td>
<td>Annual</td>
</tr>
</tbody>
</table>

Table 2. Sample Small Urban Mobility Subscription

<table>
<thead>
<tr>
<th>Small City Mobility Budget</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 car, 2 adults, 1 youth, Walkscore = 96)</td>
<td>---</td>
</tr>
<tr>
<td>Carshare</td>
<td>$ 900</td>
</tr>
<tr>
<td>Annual Bus Passes (2)</td>
<td>$ 560</td>
</tr>
<tr>
<td>Taxi</td>
<td>$ 192</td>
</tr>
<tr>
<td>Bicycle Maintenance</td>
<td>$ 100</td>
</tr>
<tr>
<td>Guaranteed Ride</td>
<td>$ 30</td>
</tr>
<tr>
<td>Member Support</td>
<td>$ 178</td>
</tr>
<tr>
<td>Annual Total</td>
<td>$ 1,960</td>
</tr>
</tbody>
</table>

Monthly Payment | $ 163 |
The MaaS development in Tompkins County is taking place in two phases as shown in Figure 10, starting with the Mobility on Demand On Ramp, through the Shared Use Mobility Center, with the support of the Federal Transit Administration. “From June 2018 to November 2019, Tompkins County participated in the FTA’s MOD On-Ramp Program to convert its MaaS concept into a multi-phase project. The results of their On-Ramp Program project created manageable phases and signaled the beginning of system development.

“Phase 1, which [is being] funded by [a] new [FTA Integrated Mobility Innovation] IMI grant ($820,000 USD), consists of four major tasks: (1) develop a multimodal trip planning platform to integrate travel information from mobility providers and enable access through a smartphone app and web platforms; (2) implement a call center to answer inquiries by telephone, text and chat (by computer) 24/7; (3) deploy a guaranteed ride program for Tompkins County residents and people traveling to Tompkins County; and (4) develop a rural First-Mile/Last-Mile service pilot extending the range of Tompkins Consolidated Area Transit (TCAT) Route 43 with Gadabout demand-response service in a project area (in the rural Village and Town of Dryden).

“Phase 2, which [builds] on the foundation developed in the IMI-funded Phase 1, is expected to implement key MaaS elements including creating a member organization, deploying financial services and enhancing customer service (beyond the call center). Initially, the MaaS concept for Tompkins County [included] customizable monthly mobility subscriptions – Phase 2 [provides] the back-office infrastructure and other services needed to offer travelers these subscriptions.”27
Another example of rural MaaS is in the San Joaquin Valley, CA. According to Caroline Rodier, Ph.D. Researcher and Associate Director of the Urban Land Use and Transportation Center at the University of California, Davis, “it is a case study that shows how mobility as a service acts as (1) An integrator of multiple mobility services to optimize access and (2) Links people and their travel needs to these mobility services. It is becoming the backbone of expanding shared mobility services in the San Joaquin Valley. Bounded by the Sierra Nevada to the east and the Coast Ranges to the west, the San Joaquin Valley is California’s single most productive agricultural region and one of the most productive in the world, producing more than half of the fruits, vegetables and nuts grown in the United States. It is home to a number of cities including Stockton, Modesto, Fresno, and Bakersfield. However a large share of its 4 million residents live in rural areas or on the fringes of urban areas. Here residents are commonly low income agricultural workers. Almost all the census tracts in the San Joaquin Valley have been declared economically and environmentally disadvantaged communities by the state of California. This region has some of the worst air quality in the nation.”

“A planning study was conducted [in the region] to examine new technology and shared mobility services to meet mobility gaps and reduce emissions. UC Davis led a community-based planning effort in partnership with the Valley which included stakeholder engagement, focus groups, and data analysis. Problems were inventoried by location and included intercity transit gaps, very high cost transit routes, services with low farebox recovery, and communities with low vehicle to adult ratios. Also new technology and shared mobility alternatives that looked promising were identified and evaluated.

“At the conclusion of the study, three pilot concepts for implementation were identified and financial support from California’s Low Carbon Transportation fund was secured to implement the pilots. These pilots included:
1. An electric vehicle carsharing service (called Miocar) in affordable housing in southern Valley;
2. MaaS (called Vamos) in the northern Valley, in San Joaquin and Stanislaus Counties; and
3. A volunteer ridesharing service (called Volunteers on the Go [VOGO]) that served the areas which are highly disadvantaged rural areas with an extremely low volume of transit service.

The MaaS platform was envisioned to knit existing and new services together as they begin to expand throughout the Valley through other low carbon transportation projects. From the traveler perspective, the following are the key user questions that VAMOS should answer:

- What is the best way to get from A to B by time and cost?
- When will my ride arrive?
- Is space available?
- Can I reserve a space?
- Can I pay now?

Figure 11 shows the system perspective of MaaS. The platform integrates different services and their data, and a smartphone app is the interface between the answers and questions.

![Figure 11. System Perspective of MaaS](image)

MaaS platforms need to communicate with mobility services via application programming interfaces (APIs) and data. However, in this project it was found that many service providers do not want to connect to the MaaS because of concerns about competition, protection of software secrets, and sometimes just the lack of an existing API. If there is an existing contract,
it is really tough to get them to connect to the platform. If a service provider is willing to
cconnect to the MaaS system, because there are no standard APIs and data structures for
integration, each integration is an expensive one-off— from $10,000 to $30,000, on just the
MaaS side. Because of these challenges, UC Davis recommended that their program partners
require a contractual agreement with subcontractors so that they will integrate and pay for the
integration with the MaaS.

An open public MaaS model (vs. a MaaS model provided by a private company) would include
all available services that are combined to provide more choices to more destinations and to
minimize travel time and cost given the travelers’ needs. This public-facing platform may lower
barriers to market entry, especially to small local providers, and increase service supply and
lower costs with more competition. Further, MaaS enables the creation of individual accounts
and codes that would allow for promotions and easy application of subsidies for special groups.

While this is the bigger picture of MaaS, Vamos had to focus on what the project team thought
were realistic short-term goals for Vamos, which included:

- Integration of transit services across transit agencies and between fixed-route, demand-
 response transit (DRT), and VOGO
- Reservations for VOGO and DRT
- Streamline transit payments and subsidies

As of August 2020, Vamos allows:
- Transit planning across 14 transit agencies in San Joaquin and Stanislaus Counties with
 o Turn by turn instructions
 o Real-time arrival information
- DRT is linked to fixed route transit
- Information on how to reserve DRT, but not direct reservations
- Reservations for VOGO are enabled
- Separate bicycle trip planning (not integrated to transit yet)

The transit agencies that are included in the MaaS application are shown in Figure 12.
Figure 12. Transit Agencies Participating in Vamos

5 Potential MaaS Roadmap

As defined in Section 2, MaaS is not simply an app – rather, it is a platform through which a traveler can plan, book and pay for a trip. Creating the mobility ecosystem for MaaS requires the formation of partnerships with mobility service providers in addition to many other activities including technology and data integration. A roadmap to developing and implementing MaaS was developed by Dallas Area Rapid Transit as shown in Figure 13. While DART is an urban transit agency, their roadmap contains the elements that will lead to a successful MaaS that strives to result in MaaS adoption, changes in travel behavior and continued innovation that directly responds to travelers’ needs.
6 MaaS Evaluation Framework

As with other technology-enabled systems deployment, it is critical to evaluate MaaS from a variety of perspectives to determine its impact on the traveler, agency and community or region. Unfortunately, there are very few evaluation processes that have been developed for MaaS. Further, the number of actual MaaS deployments in the US, particularly in rural areas, has been very limited.

One potential MaaS evaluation framework that is beginning to be used on several MaaS deployments in Sweden has promise in the US in that it addresses the complexity associated with MaaS offerings and provides a structured approach to evaluation. MaaS has impacts on at least three of the following four levels:

- **Micro level** – this incorporates the MaaS users including travelers and citizens of the area where MaaS is being offered;
- **Meso level** – this level incorporates the following:
 - Regional and local governments that determine rules and regulations, and have certain roles and responsibilities regarding the MaaS offering;
 - Public service providers that determine regulations, have specific roles and responsibilities, have organizational goals, have perceived business opportunities in offering MaaS, and have a brand image;
 - Private service providers that have to abide by certain laws, have organizational goals, have perceived business opportunities in offering MaaS, and have a brand image;
- **Phase I** (Emphasis on sharing, integrations and evaluations)
- **Phase II** (Emphasis on automated driving)
- **“Mobility as a Service”**
• National government level – may have legislation and regulations regarding MaaS, may have a vision of MaaS, and may provide financial support; and
• Society at large, which encompasses the prior three levels.

This core evaluation framework, called KOMPIS, is shown in Figure 14. The data that would be collected in order to utilize this framework is shown in Figure 15. Currently, this framework is being used to evaluate at least two MaaS deployments in Sweden: LIMA (Lindholmen Mobility Arena) and MoJo (Mobility Johanneberg) projects. These projects are running from September 2020 to September 2021.

Figure 14. MaaS Core Evaluation Framework

Figure 15. Data Collection for MaaS Evaluation
7 Conclusions

“Many public transportation authorities are looking to how they can enable better mobility for their citizens, in congested urban settings as well as in poorly connected peripheral communities and rural areas. MaaS is increasingly being presented as a possible solution in both contexts, although the path forward has proven far more difficult than hoped. Part of this may lie in underestimating the complexities of achieving integrated mobility services, which is often linked to a lack of practical experience in implementing and running MaaS services. It is critical to understand the bigger picture of MaaS primarily from the user perspective but in an interplay with the service perspective, as the service offer and design inherently affect use of the service.”

“Central questions remain regarding how to achieve MaaS. Regardless of the type of organization [undertaking MaaS], three such interrelated questions are: 1) What is the ecosystem? (i.e. Which organizations take what role(s) in a MaaS service?); 2) What is the business model? (i.e. What is the value offering to the customers and users? and How can this offer be achieved in an (economically) sustainable manner?), and 3) How are outcomes measured? (i.e. What are the goals? What are the KPIs? Which assessment methods and tools are most appropriate?). There are likely multiple appropriate answers which vary according to the local context and specific service, which complicates the decision-making process, particularly given the current state of affairs with services limited in number and scale, limited empirical data, and unstructured (and incomparable) evaluations, all of which contribute to uncertainty.”

The evaluation framework in Section 7 reflects several aforementioned items that an agency should identify in order to explore the development of MaaS:

- What are the goals and objectives of offering MaaS? These will be used to identify the types of impacts that are expected as a result of offering MaaS and will be used in the evaluation framework, as shown in Figure 14. For example, an overall goal could be to improve the mobility of travelers in and around the area being covered. The objectives should be quantitative and can be used to define key performance indicators (KPIs) that will be used to evaluate the MaaS solution both before and after it is deployed.
- What are you providing to travelers? For example, if you have conducted a needs assessment to determine the needs of the travelers in your area, will MaaS address any of those needs? If so, which needs will be addressed by providing a MaaS solution?
- Which organizations should be involved in MaaS? The answer to this question will help to identify the “levels” as shown in Figure 14. Here, at least four types of organizations should be considered:
 - Organization(s) offering MaaS (e.g., a public transit provider, other public/ government entity such as a metropolitan planning organization, social service agency or private organization)
- Organizations offering mobility services through a MaaS platform (e.g., public transit agency, carsharing companies, ridesourcing companies, bikesharing companies, taxi companies, etc.)
- Organization(s) that develop MaaS platforms
- Organizations that represent and support travelers, including social service organizations, transit riders’ groups and medical providers

- What steps are required to fund the development and deployment of MaaS, and ensure that MaaS is sustainable after the initial deployment?
- How will you address the accessibility and equity of a technology-enabled MaaS solution? Will individuals be able to access the MaaS platform in a variety of ways, including those that do not require a smartphone or computer?

MaaS is a complex undertaking, but has the potential to significantly benefit communities within the platform’s ecosystem. These questions can help entities considering MaaS to lay the right foundation for implementing a system that serves their needs.
Endnotes

2. Jana Lynott, AICP, Senior Policy Advisor, “Universal Mobility as a Service,” International Conference on Demand Responsive and Innovative Transportation Services, Tuesday, April 16, 2019, Baltimore, MD
5. “Mobility Management Program of Brown County (WI),” https://greenbaywi.gov/368/Mobility-Management-Program
6. Bob Sheehan, “Mobility Marketplace Connecting Trips for All,” International Conference on Demand Responsive and Innovative Transportation Services, Tuesday, April 16, 2019, Baltimore, MD
7. Bob Sheehan, “Mobility Marketplace Connecting Trips for All,” International Conference on Demand Responsive and Innovative Transportation Services, Tuesday, April 16, 2019, Baltimore, MD
8. Bob Sheehan, “Mobility Marketplace Connecting Trips for All,” International Conference on Demand Responsive and Innovative Transportation Services, Tuesday, April 16, 2019, Baltimore, MD
12. Aki Aapaoja, “MaaS service combinations for different geographical areas,” page 8
13. Aki Aapaoja, “MaaS service combinations for different geographical areas,” page 8
15. Aki Aapaoja, “MaaS service combinations for different geographical areas,” page 8
16. Aki Aapaoja, “MaaS service combinations for different geographical areas,” page 10
17. Hana Creger, Joel Espino and Alvaro S. Sanchez, “Mobility Equity Framework: How to Make Transportation Work for People,” page 16
18. Hana Creger, Joel Espino and Alvaro S. Sanchez, “Mobility Equity Framework: How to Make Transportation Work for People,” page 16
19. Hana Creger, Joel Espino and Alvaro S. Sanchez, “Mobility Equity Framework: How to Make Transportation Work for People,” The Greenlining Institute, page 16-17
20. Hana Creger, Joel Espino and Alvaro S. Sanchez, “Mobility Equity Framework: How to Make Transportation Work for People,” The Greenlining Institute, page 17
21. Adapted from Dwight Mengel, “Mobility as a Service (MaaS): A Tool for Small Urban & Rural Communities,” presentation to New York ITS, June 14, 2019

Carol Schweiger, “The Latest Developments in Mobility as a Service in the United States: Progress as of 2019,” Routes et Transports, Automne 2019, Association québécoise des transports (AQTr), October 2019

The original source of this diagram is Roland Berger with Global Strategy Consulting Firm, and was provided in Tina Mörch-Pierre, “Building MaaS: Technology Challenges and Solution,” presentation at the Shared-Use Mobility Center’s 2019 Summit, March 2019.

Jana Sochor, “Evaluation of Mobility as a Service,” presentation for 2020 ITS World Congress All-Access, broadcast on September 23, 2020

Ibid

Jana Sochor, personal correspondence, August 25, 2020